Люди стремятся к полной независимости от проводов — это один из главных технологических трендов современности. Сначала провода «отпали» у домашних телефонов, и, вздохнув с облегчением, мы перешли на радиотрубки; потом от этих пут освободились компьютерные клавиатура и мышка. Не так давно инженеры создали устройства, способные заряжать наши гаджеты по воздуху; однако эффективны они пока только на коротких дистанциях. В начале этого года команда учёных из Санкт-Петербурга (университет ИТМО) опубликовала статью в журнале Applied Physics Letters, где представила свою версию системы беспроводной передачи электричества. Эта разработка интересна тем, что может отправлять ток дальше, чем все остальные устройства.
У кого дальше?
В 2007 году в журнале Science был описан удивительный эксперимент, который провела группа физиков-исследователей из Массачусетского технологического института (МТИ) под руководством профессора Марина Солячича. Учёные расположили в 2,5 м друг от друга две катушки медного провода. Они были настроены на одинаковую резонансную частоту, то есть обладали одинаковой периодичностью внутренних колебаний.
Первая катушка получала энергию от источника с переменным электрическим током и сама становилась источником магнитного поля, которое пронизывало вторую катушку и создавало в ней ток. А он, в свою очередь, заставлял гореть 60-ваттную лампочку, установленную на второй катушке.
После этой публикации в средствах массовой информации вовсю заговорили о таком чуде науки и техники, как
беспроводная передача электричества,
однако преодолеть расстояние в 2,5 м по воздуху ток смог только в лабораторных условиях при помощи металлических катушек внушительного размера.
Когда же учёные из МТИ попытались миниатюризировать эту технологию, дальность передачи электричества составила всего 10 см. В 2015 году физики из питерского Университета ИТМО повторили эксперимент — с некоторыми модификациями — и в результате увеличили расстояние передачи тока по воздуху в три раза.
Учёные постоянно совершенствуют технологию и прогнозируют, что скоро создадут компактное зарядное устройство, действующее в пределах нескольких метров.
Чувственное поле
Безусловно, Солячич не первооткрыватель в этом деле. Его опыты в некотором роде повторение эксперимента известного физика Николы Тесла, который ещё в 1894 году смог зажечь фосфорную лампу накаливания посредством беспроводной резонансной взаимоиндукции.
— Тесла первым предложил идею, на которой основаны нынешние все трансформаторы: энергию можно передавать не дальним, а ближним полем — тем, что находится в небольшом радиусе от источника, — говорит Иван Иорш, кандидат физико-математических наук, доцент лаборатории метаматериалов Университета ИТМО, участник группы по созданию системы беспроводной передачи электричества. — Ближнее электромагнитное поле устроено так, что не покидает область вокруг объекта и может хранить в нём много запасённой энергии. К сожалению, электрическое поле быстро ослабевает с увеличением расстояния. Но Солячич как раз показал, что, если мы установим два маятника, способных запасать много энергии, поле может усилиться, потому что будет «чувствовать», что где-то там его ждёт второй резонатор.
— Если уже в XIX веке люди знали о возможности беспроводной передачи электроэнергии, то почему не разрабатывали соответствующие технологии? — робко интересуюсь я.
— Никола Тесла создавал инновации, к которым общество было не готово.
Многие его идеи получили развитие только сейчас и воспринимаются как новые, в том числе это относится к беспроводной передачи электроэнергии. Если бы общество сразу приняло его разработки, вы бы к нам не на транспорте добирались, а просто телепортировались, — шутит Иван.
— Нам понравилась идея учёных из МИТ, и мы стали думать, как усовершенствовать эту технологию с помощью наших метаматериалов — улучшить способ передачи, — вступает в разговор Полина Капитанова, кандидат технических наук, руководитель проекта. — Но работу с метаматериалами мы оставили напоследок, а вначале решили заменить медные катушки на диэлектрические резонаторы.
Ставка на керамику
Металлические катушки не очень эффективны: при приложении к ним электрического поля они сильно греются и отдают в пространство много тепла, а значит, попросту теряют электроэнергию, тогда как её нужно передавать… по воздуху. В поисках материала, который мог бы заменить в эксперименте медь, учёным помогли работы немецкого физика Густава Ми, ставившего опыты с диэлектриками — веществами, плохо проводящими электрический ток (их часто называют изоляторами). Описывая их свойства, Ми отметил, что в диэлектрических частицах могут возникать резонансы, способные запасать много энергии, а в диэлектрической частице сферической формы таких резонансов может быть бесконечное множество.
— Мы тут же стали перебирать диэлектрики, которые нас окружают: дерево, стекло… — рассказывает Полина. — Ещё стоит учитывать, что в наши задачи входило создание миниатюрных резонаторов. Ведь чтобы технология стала применимой в быту и востребованной, её нужно внедрять в мобильные устройства.
— И на чём же вы остановились?
— Прочитав статью Елизаветы Ненашевой, сотрудника НИИ «Гириконд», о керамических элементах для микроволновой техники, мы решили сделать ставку на керамику: резонаторы из этого материала почти не теряют электроэнергию, не боятся сильного нагрева и обладают большой ёмкостью.
— И правда, поэтому их используют в микрофонах, радиолокаторах, микроволновках…
— А также в космических кораблях и высокомощной военной электронике, — добавляет Иван. — Если понадобится бомбануть Тесла-пушкой, в ней должны быть мощные компоненты, иначе они не выдержат нагрузку и расплавятся.
Вдохновлённые метаматериалом
Без разделения труда эффективной работы не получится — физики из ИТМО помнят об этом правиле. Иван Иорш отвечает за теоретическую часть исследования, Полина Капитанова — за проведение эксперимента, а инженер Минчжао Сун, приехавший из Китая на стажировку, — за электродинамическое моделирование.
Я в лаборатории метаматериалов, наблюдаю за работой учёных.
Минчжао кладёт на стол два одинаковых серых керамических шарика по два сантиметра в диаметре
Каждый из них, словно чупа-чупс, закреплён на держателе и подсоединён проводами к своему аппарату. На моих глазах происходит чудо: подаётся напряжение, и светодиодная лампочка на втором держателе начинает светиться. Второй шарик с лампочкой получает энергию от первого без каких-либо проводов на расстоянии 10 см. Но чем больше физик отдаляет шарики друг от друга, тем тусклее светит лампочка. Минчжао достаёт кусок пенопласта и кладёт на него шарики. Сверху к пенопласту прилажено множество отрезков тонкой проволоки — все они одинаковой длины и закреплены параллельно друг другу на равном расстоянии. Инженер начинает двигать по пенопласту шарик с лампочкой, удаляя его от первого на 15 см, затем на 20, 25, 30… На 30 см лампочка продолжает гореть так же ярко, как и прежде.
Как это работает? Один аппарат, подсоединённый к керамическому шарику, — это векторный анализатор, который посылает электрический сигнал по проводу на второй аппарат — усилитель мощностью 1 Вт. Тот, соответственно, усиливает сигнал, и дальше ток поступает на держатель второго шарика — диэлектрического резонатора. Он заряжается и по воздуху посылает электричество на первый шарик. А дальше как в опыте американских учёных с катушками. С одной оговоркой: чтобы лампочка горела, на втором держателе установлена схема преобразования переменного тока в постоянный.
— Что это за кусок пенопласта? — спрашиваю я Полину, внимательно изучая конструкцию.
— Это и есть наш метаматериал — метаповерхность. По сути, очень простая вещь — пенопласт с тонкими металлическими проводами, расположенными в нужной геометрии. Эти отрезки проволочек — так называемые антенники. Помните антенны советских телевизоров? Чтобы канал транслировался без помех, нужно было крутить антенну, поднимать, опускать её, пока не поймаешь сигнал. Антеннки в метаматериале тоже нужно сделать заданной длины и расположить особым образом, чтобы точно направить сигнал, передаваемый от одного керамического шарика другому.
— И что, действительно такое простое устройство — кусок пенопласта с проводочками — усиливает эффективность эксперимента?
— В данном случае использование метаповерхности помогло увеличить радиус передачи электроэнергии с 10 см до 30. Причём неважно, сколько лампочек или телефонов вы пожелаете зарядить. Представьте, что этот метаматериал встроен в ваш рабочий стол, — Полина похлопывает по столешнице. — Вы кладёте на него и подзаряжаете разом и свой лэптоп, и планшет, и телефон друга, который зашёл в гости.
— Сложно изготовить такой метаматериал?
— Нет, любой студент-физик сделает его за полчаса. Нужно только нарезать проводки и упорядочить их в диэлектрической матрице.
Подзарядка для сердца
Лабораторная система беспроводной передачи электричества ИТМО пока выглядит весьма громоздко, однако разработчики уверяют, что в скором времени она станет миниатюрной, и дело это несложное.
— Анализатор и усилитель заменим компактной электроникой, чтобы разместить на печатной плате или в корпусе устройства, например мобильного телефона. Это можно сделать хоть сейчас, — поясняет Полина. — В свободной продаже уже есть мизерные генераторы, усилители и выпрямители сигналов. Источник электрического тока будет подключён к розетке, постоянный сигнал переведён в переменный; переменный сигнал усилится и пойдёт на резонатор излучателя, а тот пошлёт его на мобильное или другое устройство, чтобы его подзарядить.
Беспроводные зарядки для телефонов уже есть в некоторых аэропортах и ресторанах.
Правда, такой мобильный должен иметь встроенный зарядный модуль с медной спиральной катушкой или чехол с таким модулем. А сама беспроводная зарядка пока похожа на базу для домашнего радиотелефона, поэтому мобильный туда нужно именно ставить — вертикально, в гнездо, что создаёт некоторые неудобства.
— Керамические резонаторы позволяют обойти это ограничение, а метаматериал увеличивает дистанцию между приёмником и передатчиком. В идеале же беспроводная передача электричества должна уподобиться вай-фаю, — Полина встаёт со стула и достаёт смартфон из кармана джинсов. — Хочется, чтобы ты заходил в комнату и не думал, заряжается телефон или нет, а твёрдо знал, что заряжается.
— Вообще, у нас есть очень хорошая идея по усовершенствованию беспроводной передачи электричества. До завершения экспериментов и публикации результатов я не могу раскрывать подробности, но постараюсь передать суть, — интригует Полина. — Мы ищем материал, который ещё слабее, чем керамика, взаимодействует с электрическим полем. Это позволит спуститься на низкие частоты.
Пока наша система работает на частоте 2,4 ГГц, в то время как рабочая частота мобильных устройств значительно ниже. Зачем это нужно? Во-первых, есть стандартны безопасности. Тело человека при работе с электронными устройствами не должно нагреваться за час больше чем на два градуса, поэтому мы работаем с магнитным полем как менее вредным для организма. Во-вторых, на низких частотах работает вся дешёвая потребительская электроника. И нужно адаптировать под неё свои разработки, ведь мы хотим выйти на массовое производство и принести реальную пользу.
Публикация группы учёных ИТМО Mingzhao Song, Ivan Iorsh, Polina Kapitanova et al. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators // Applied Physics Letters. Published online 12 Jan. 2016.
www.shutterstock.com